Poset Ramsey Numbers for Boolean Lattices

نویسندگان

چکیده

For each positive integer n, let Qn denote the Boolean lattice of dimension n. posets $P, P^{\prime }$ , define poset Ramsey number $R(P,P^{\prime })$ to be least N such that for any red/blue coloring elements QN, there exists either a subposet isomorphic P with all red, or $P^{\prime blue. Axenovich and Walzer introduced this concept in Order (2017), where they proved R(Q2,Qn) ≤ 2n + 2 R(Qn,Qm) mn n m. They later R(Qn,Qn) n2 2n. 1. We provide some improved bounds various $n,m \in \mathbb {N}$ . In particular, we prove − 2, $R(Q_{2}, Q_{n}) \le \frac {5}{3}n 2$ $R(Q_{3}, \lceil {37}{16}n {55}{16}\rceil $ also R(Q2,Q3) = 5, $R(Q_{m}, \left (m - 1 {2}{m+1} \right )n {1}{3} m 2\right \rceil > ≥ 4.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boolean Lattices: Ramsey Properties and Embeddings

A subposet Q′ of a poset Q is a copy of a poset P if there is a bijection f between elements of P and Q′ such that x ≤ y in P iff f(x) ≤ f(y) in Q′. For posets P, P ′, let the poset Ramsey number R(P, P ′) be the smallest N such that no matter how the elements of the Boolean lattice QN are colored red and blue, there is a copy of P with all red elements or a copy of P ′ with all blue elements. ...

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

On Poset Boolean Algebras

Let 〈P,≤〉 be a partially ordered set. We define the poset Boolean algebra of P , and denote it by F (P ). The set of generators of F (P ) is {xp : p ∈ P}, and the set of relations is {xp ·xq = xp : p ≤ q}. We say that a Boolean algebra B is well-generated, if B has a sublattice G such that G generates B and 〈G,≤G〉 is well-founded. A wellgenerated algebra is superatomic. Theorem 1 Let 〈P,≤〉 be a...

متن کامل

Ramsey numbers for trees

For n ≥ 5 let T ′ n denote the unique tree on n vertices with ∆(T ′ n) = n − 2, and let T ∗ n = (V, E) be the tree on n vertices with V = {v0, v1, . . . , vn−1} and E = {v0v1, . . . , v0vn−3, vn−3vn−2, vn−2vn−1}. In this paper we evaluate the Ramsey numbers r(Gm, T ′ n) and r(Gm, T ∗ n), where Gm is a connected graph of order m. As examples, for n ≥ 8 we have r(T ′ n, T ∗ n) = r(T ∗ n , T ∗ n) ...

متن کامل

Ramsey numbers for local colorings

The concept of a local k-coloring of a graph G is introduced and the corresponding local k-Ramsey number r 1 ~c(G) is considered. A local k-coloring of G is a coloring ofits edges in such a way that the edges incident to any vertex of G are colored with at most k colors. The number r 1 ~c(G) is the minimum m for which Km contains a monochromatic copy of G for every local k-coloring of Km. The n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Order

سال: 2021

ISSN: ['1572-9273', '0167-8094']

DOI: https://doi.org/10.1007/s11083-021-09557-4